On Tautological Globular Operads

Phillip M Bressie

Kansas State University

pmbressie@ksu.edu

October 24, 2018

(Non-symmetric) Operads Classically Defined

Definition

A non-symmetric operad O consists of a sequence of sets $\{O(n)\}_{n\in\mathbb{N}}$ whose *n*-th entry is the set of *n*-ary operations, an identity operation $\mathbb{1} \in O(1)$, and for all $n, k_1, k_2, ..., k_n \in \mathbb{N}$ a composition operation

$$\circ: O(n) imes \prod_{i=1}^n O(k_i) o O(\sum_{i=1}^n k_i)$$

such that

$$\theta_0 \circ (\theta_1 \circ (\theta_{1_1}, ..., \theta_{1_k}), ..., \theta_n \circ (\theta_{n_1}, ..., \theta_{n_l})) = (\theta_0 \circ (\theta_1, ..., \theta_n)) \circ (\theta_{1_1}, ..., \theta_{1_k}, ..., \theta_{n_1}, ..., \theta_{n_l})$$

and

$$\theta_0 \circ (\mathbb{1}, \mathbb{1}, ..., \mathbb{1}) = \theta_0 = \mathbb{1} \circ \theta_0$$

for all $\theta_i \in \{O(n)\}_{n \in \mathbb{N}}$ whenever the compositions are well-defined.

Algebra for an Operad

Definition

The **tautological operad** taut(X) on a set X is the operad whose

- *n*-ary operations are **Set**(*Xⁿ*, *X*)
- Identity operation is the identity map $\mathbb{1}_X: X \to X$
- Composition is given by

$$\circ: \mathbf{Set}(X^n, X) imes \prod_{i=1}^n \mathbf{Set}(X^{k_i}, X) o \mathbf{Set}(X^n, X) imes \mathbf{Set}(X^{\sum_i k_i}, X^n)$$

 $o \mathbf{Set}(X^{\sum_i k_i}, X)$

Definition

An **algebra** A for an operad O is a set A equipped with an operad homomorphism $\xi : O \rightarrow taut(A)$.

The Category of Graded Sets

 \bullet The category ${\boldsymbol{\mathsf{Grd}\mathsf{Set}}}$ is the slice category ${\boldsymbol{\mathsf{Set}}}/{\mathbb{N}}$

The Free Monoid Monad <i>T</i>	
$T: \mathbf{Set} ightarrow \mathbf{Set}$	
• $\mu: T^2 \Rightarrow T$	
• $\eta : \mathbb{1}_{Set} \Rightarrow T$	

We will freely interchange the set \mathbb{N} with $T(\{*\})$

The Composition Tensor Product

Definition

Let $x : X \to \mathbb{N}$ and $y : Y \to \mathbb{N}$ be a pair of graded sets. Their **composition tensor product** $x \Box y : X \Box Y \to \mathbb{N}$ is defined by the diagram

where $!_Y : Y \to \{*\}$ is the unique map from Y to the terminal one point set. The underlying graded set $X \Box Y$ is the pullback of x and $T(!_Y)$ with the arity function $x \Box y$ defined to be the composition along the top row.

Operads as Monoids

The product \Box together with the graded set $i : \{*\} \hookrightarrow T(\{*\})$ gives **GrdSet** the structure of a monoidal category.

Definition

A nonsymmetric operad is a monoid $(X, m : X \Box X \to X, e : \{*\} \to X)$ in **GrdSet** with respect to the composition tensor product \Box .

Three Induced Functors

The Change of Base Functor

Given a set map $f : A \rightarrow B$ there is an induced functor $f^* : \mathbf{Set}/B \rightarrow \mathbf{Set}/A$ between slice categories called a **change of base** functor:

• It takes a set map $\chi : X \to B$ and returns the pullback map $f^*(\chi) : X_{\chi} \times_f A \to A$ of χ along f

The Left Adjoint

The Dependent Sum Σ_f : **Set**/ $A \rightarrow$ **Set**/B

On objects the left adjoint is simply composing an object of \mathbf{Set}/A with f resulting in an object in \mathbf{Set}/B .

The Right Adjoint

The Dependent Product $\Pi_f : \mathbf{Set}/A \to \mathbf{Set}/B$

Let $\psi : Y \to A$ be any morphism in **Set**/A. The map $\Pi_f(\psi) : \Gamma \to B$ is constructed by specifying the fiber Γ_b over each point $b \in B$:

- $\forall b \in B$ consider its fiber A_b along the map f
- $\forall c \in A_b$ consider its fiber Y_c along the map ψ
- The fiber Γ_b along $\Pi_f(\psi)$ is the product $\prod_{c \in A_b} Y_c$

Following this construction $\forall b \in B$ gives the complete map $\Gamma := \prod_{b \in B} \Gamma_b \to B.$ Internal Hom in GrdSet

[B, -]: GrdSet \rightarrow GrdSet

The adjoint is found by taking the right adjoint of each factor in the composition and reversing the order in which they are composed:

$$-\Box B = \Sigma_{\mu_{\{*\}}} \Sigma_{T(b)} T(!_B)^*$$
$$[B, -] = \Pi_{T(!_B)} T(b)^* \mu_{\{*\}}^*$$

$(A_{a} \times_{\mu_{\{*\}}^{*}(a)} T(\mathbb{N}))_{\mu_{\{*\}}^{*}(a)} \times_{T(b)} T(B) \to T(B)$

A triple $((\alpha, t), \beta)$, an element of $\alpha \in A$ whose arity is factored via the string $t \in T(\mathbb{N})$, together with a word $\beta \in T(B)$ whose letters' arities agree with t

$(A_{\mathsf{a}} \times_{\mu_{\{*\}}^*(\mathsf{a})} T(\mathbb{N}))_{\mu_{\{*\}}^*(\mathsf{a})} \times_{T(b)} T(B) \to T(B)$

A triple $((\alpha, t), \beta)$, an element of $\alpha \in A$ whose arity is factored via the string $t \in T(\mathbb{N})$, together with a word $\beta \in T(B)$ whose letters' arities agree with t

$\Pi_{T(!_B)}T(b)^*\mu^*_{\{*\}}(a):\Gamma\to\mathbb{N}$

- $\forall n \in \mathbb{N}$ consider its fiber $T(B)_n$ along the map $T(!_B) : T(B) \to \mathbb{N}$
- $\forall \beta \in T(B)_n$ has a fiber $((A_a \times_{\mu_{\{*\}}^*} T(\mathbb{N}))_{\mu_{\{*\}}^*(a)} \times_{T(b)} T(B))_\beta$ along the map $T(b)^* \mu_{\{*\}}^*(a)$

$$\Gamma_n := \prod_{\beta \in \mathcal{T}(B)_n} ((A_a \times_{\mu_{\{*\}}^*} \mathcal{T}(\mathbb{N}))_{\mu_{\{*\}}^*(a)} \times_{\mathcal{T}(b)} \mathcal{T}(B))_{\beta}$$

$(A_{\mathsf{a}} \times_{\mu_{\{*\}}^*(\mathsf{a})} T(\mathbb{N}))_{\mu_{\{*\}}^*(\mathsf{a})} \times_{T(b)} T(B) \to T(B)$

A triple $((\alpha, t), \beta)$, an element of $\alpha \in A$ whose arity is factored via the string $t \in T(\mathbb{N})$, together with a word $\beta \in T(B)$ whose letters' arities agree with t

$\Pi_{T(!_B)}T(b)^*\mu^*_{\{*\}}(a):\Gamma\to\mathbb{N}$

- $\forall n \in \mathbb{N}$ consider its fiber $T(B)_n$ along the map $T(!_B) : T(B) \to \mathbb{N}$
- $\forall \beta \in T(B)_n$ has a fiber $((A_a \times_{\mu_{\{*\}}^*} T(\mathbb{N}))_{\mu_{\{*\}}^*(a)} \times_{T(b)} T(B))_\beta$ along the map $T(b)^* \mu_{\{*\}}^*(a)$

$$\Gamma_n := \prod_{\beta \in \mathcal{T}(B)_n} ((\mathcal{A}_{\mathsf{a}} \times_{\mu_{\{*\}}^*} \mathcal{T}(\mathbb{N}))_{\mu_{\{*\}}^*(\mathsf{a})} \times_{\mathcal{T}(b)} \mathcal{T}(B))_{\beta}$$

In Γ_n , every word $\beta \in T(B)$ of length *n* is paired with an element of *A* whose arity factors to agree with the sum of the arities of the letters in β

We shall denote $\Pi_{\mathcal{T}(!_B)}\mathcal{T}(b)^*\mu^*_{\{*\}}(a):\Gamma \to \mathbb{N}$ more suggestively as

 $H_{B,A}: [B,A] \to \mathbb{N}$

We shall denote $\Pi_{\mathcal{T}(!_B)}\mathcal{T}(b)^*\mu^*_{\{*\}}(a):\Gamma \to \mathbb{N}$ more suggestively as

 $H_{B,A} : [B, A] \to \mathbb{N}$ For $\beta \in T(B)_n$ such that $\beta = \beta_1 \beta_2 \dots \beta_n$ with $\beta_i \in B$ $[B, A]_n = \prod_{\beta \in T(B)_n} \{((\alpha, t), \beta) | \alpha \in A, t \in T(\mathbb{N})_n, a(\alpha) = \sum_i t_i, T(b)(\beta) = t\}$

We shall denote $\Pi_{\mathcal{T}(!_B)}\mathcal{T}(b)^*\mu^*_{\{*\}}(a):\Gamma \to \mathbb{N}$ more suggestively as

 $H_{B,A}: [B,A] \to \mathbb{N}$ For $\beta \in T(B)_n$ such that $\beta = \beta_1 \beta_2 \dots \beta_n$ with $\beta_i \in B$ $[B,A]_n = \{((\alpha,t),\beta)|$ $\beta \in T(B)_n$ $\alpha \in A, t \in T(\mathbb{N})_n, a(\alpha) = \sum_i t_i, T(b)(\beta) = t\}$ $\cong \prod_{\beta \in \mathcal{T}(B)_n} \{ (\alpha, \beta) | \alpha \in \mathcal{A}, a(\alpha) = \sum_i b(\beta_i) \}$

We shall denote $\Pi_{\mathcal{T}(!_B)}\mathcal{T}(b)^*\mu^*_{\{*\}}(a):\Gamma \to \mathbb{N}$ more suggestively as

 $H_{B,A}: [B,A] \to \mathbb{N}$ For $\beta \in T(B)_n$ such that $\beta = \beta_1 \beta_2 \dots \beta_n$ with $\beta_i \in B$ $[B,A]_n = \left| \left[\{((\alpha,t),\beta) \right] \right|$ $\beta \in T(B)_n$ $\alpha \in A, t \in T(\mathbb{N})_n, a(\alpha) = \sum_i t_i, T(b)(\beta) = t\}$ $\cong \prod_{\alpha \in \mathcal{T}(\mathcal{D})} \{ (\alpha, \beta) | \alpha \in \mathcal{A}, a(\alpha) = \sum_{i} b(\beta_i) \}$ $\beta \in \overline{T(B)}_n$

A 'map' $\gamma \in [B, A]_n$ may be thought of as a choice of elements from A to correspond to each string of *n* elements from B in such a way as to preserve arities.

Degenerate Graded Sets

The tautological operad should be generated by a set to give classical algebras.

Degenerate Graded Sets

The tautological operad should be generated by a set to give classical algebras.

 But any set may be seen as a 'degenerate' graded set in a canonical way.

Definition

A degenerate graded set is a graded set concentrated in degree 0. More precisely, it is a graded set $x : X \to \mathbb{N}$ whose arity map factors as $x = [0] \circ !_X : X \to \{*\} \to \mathbb{N}$ in which $[0] : \{*\} \to \mathbb{N}$ is the 'name of zero' map which identifies the element $0 \in \mathbb{N}$.

The Internal Hom $H_{X,X} : [X,X] \to \mathbb{N}$

Let $x : X \to \mathbb{N}$ be a degenerate graded set.

 $H_{X,X}:[X,X]\to\mathbb{N}$ For $\xi \in T(X)_n$ such that $\xi = \xi_1 \xi_2 \dots \xi_n$ with $\xi_i \in X$ $[X,X]_n = \prod \{((\chi,t),\xi) | \chi \in X, t \in T(\mathbb{N})_n, T(x)(\xi) = t, t \in T(\mathbb{N})_n \}$ $\xi \in T(X)_n$ $x(\chi) = 0 = \sum_{i} t_i = \sum_{i} 0\}$ $\cong \qquad \{(\chi,\xi)|\chi\in X\}\cong \qquad \{\chi|\chi\in X\}$ $\xi \in T(X)_n$ $\xi \in T(X)_n$

The Internal Hom $H_{X,X} : [X,X] \to \mathbb{N}$

Let $x : X \to \mathbb{N}$ be a degenerate graded set.

 $H_{X,X}:[X,X]\to\mathbb{N}$ For $\xi \in T(X)_n$ such that $\xi = \xi_1 \xi_2 \dots \xi_n$ with $\xi_i \in X$ $[X,X]_n = \{((\chi,t),\xi) | \chi \in X, t \in T(\mathbb{N})_n, T(x)(\xi) = t, \}$ $\xi \in T(X)_n$ $x(\chi) = 0 = \sum_{i} t_i = \sum_{i} 0\}$ $\cong \qquad \{(\chi,\xi)|\chi\in X\}\cong \qquad \{\chi|\chi\in X\}$ $\xi \in T(X)_n$ $\xi \in T(X)_n$ \cong Set (X^n, X)

The Classical Tautological Operad taut(X)

We will need the following:

$$\epsilon^{X} : [X, -] \Box X \Rightarrow \mathbb{1}_{\mathsf{GrdSet}}$$

$$\epsilon^X_X : [X, X] \Box X \to X$$

The Classical Tautological Operad taut(X)

We will need the following:

$$\epsilon^{X} : [X, -] \Box X \Rightarrow \mathbb{1}_{\mathsf{GrdSet}} \qquad \qquad \epsilon^{X}_{X} : [X, X] \Box X \to X$$

$$\frac{\epsilon_X^X \circ (\mathbbm{1}_{[X,X]} \Box \epsilon_X^X) : [X,X] \Box [X,X] \Box X \to X}{m : [X,X] \Box [X,X] \to [X,X]} \qquad \qquad \frac{\lambda_X : \{*\} \Box X \to X}{e : \{*\} \to [X,X]}$$

The Classical Tautological Operad taut(X)

We will need the following:

$$\epsilon^X : [X, -] \Box X \Rightarrow \mathbb{1}_{\mathsf{GrdSet}} \qquad \qquad \epsilon^X_X : [X, X] \Box X \to X$$

$$\frac{\epsilon_X^X \circ (\mathbb{1}_{[X,X]} \Box \epsilon_X^X) : [X,X] \Box [X,X] \Box X \to X}{m : [X,X] \Box [X,X] \to [X,X]} \qquad \qquad \frac{\lambda_X : \{*\} \Box X \to X}{e : \{*\} \to [X,X]}$$

Definition

The **tautological operad** on a degenerate graded set $x : X \to \mathbb{N}$ is the graded set $taut(X) : [X, X] \to \mathbb{N}$ equipped with the multiplication map $m : [X, X] \Box [X, X] \to [X, X]$ and unit map $e : \{*\} \to [X, X]$.

Algebra for a Graded Set

Definition

A graded algebra for a (non-symmetric) operad $o : O \to \mathbb{N}$ is a morphism of graded sets $f : O \to taut(X)$ for some degenerate graded set $x : X \to \mathbb{N}$.

Theorem

An algebra for an operad O is an algebra for every operad P which maps to O. In particular, an algebra for O is an algebra for every sub-operad of O.

$$P \xrightarrow{g} O \xrightarrow{f} taut(X) \qquad \qquad \tilde{O} \xrightarrow{i} O \xrightarrow{f} taut(X)$$
$$P \xrightarrow{f(g)} taut(X) \qquad \qquad \tilde{O} \xrightarrow{f(i)} taut(X)$$

Generalization

All of this generalizes naturally to setting of globular sets and collections.

Globular Sets

Definition

The **globe category** \mathbb{G} has \mathbb{N} as its set of objects. Its morphisms are generated by $\sigma_n : n \to n+1$ and $\tau_n : n \to n+1$ for all $n \in \mathbb{N}$ subject to the relations $\sigma_{n+1} \circ \sigma_n = \tau_{n+1} \circ \sigma_n$ and $\sigma_{n+1} \circ \tau_n = \tau_{n+1} \circ \tau_n$.

Definition

A globular set is a contravariant functor $G : \mathbb{G} \to \mathbf{Set}$. The category **Glob** of globular sets is the category of presheaves on \mathbb{G} .

Globular Sets

Definition

The **globe category** \mathbb{G} has \mathbb{N} as its set of objects. Its morphisms are generated by $\sigma_n : n \to n+1$ and $\tau_n : n \to n+1$ for all $n \in \mathbb{N}$ subject to the relations $\sigma_{n+1} \circ \sigma_n = \tau_{n+1} \circ \sigma_n$ and $\sigma_{n+1} \circ \tau_n = \tau_{n+1} \circ \tau_n$.

Definition

A globular set is a contravariant functor $G : \mathbb{G} \to \mathbf{Set}$. The category **Glob** of globular sets is the category of presheaves on \mathbb{G} .

Globular Sets

A globular set $G = (\{G_n\}_{n \in \mathbb{N}}, \{s_G^n\}, \{t_G^n\})$ consists of a family of sets $\{G_n\}_{n \in \mathbb{N}}$ together with source and target maps $s_G = \{s_G^n : G_n \to G_{n-1}\}$ and $t_G = \{t_G^n : G_n \to G_{n-1}\}$ subject to the relations $s_G^n \circ s_G^{n+1} = s_G^n \circ t_G^{n+1}$ and $t_G^n \circ s_G^{n+1} = t_G^n \circ t_G^{n+1}$ in each dimension $n \in \mathbb{N}$.

The Free Strict ω -category Monad $\mathcal{T}: \mathbf{Glob} \to \mathbf{Glob}$

Definition

The monad \mathcal{T} : **Glob** \rightarrow **Glob** takes a globular set X and returns the underlying globular set of the free strict ω -category generated by X. It extends globular set homomorphisms in the canonical way.

The Free Strict $\omega\text{-category}$ Monad $\mathcal{T}:\mathbf{Glob}\to\mathbf{Glob}$

Definition

The monad $\mathcal{T} : \mathbf{Glob} \to \mathbf{Glob}$ takes a globular set X and returns the underlying globular set of the free strict ω -category generated by X. It extends globular set homomorphisms in the canonical way.

- Consider the globular set 1 with exactly one cell in every dimension.
 - We may think of the elements of $\mathcal{T}(1)$ as all possible globular pasting diagrams.

The Free Strict $\omega\text{-category}$ Monad $\mathcal{T}:\mathbf{Glob}\to\mathbf{Glob}$

Definition

The monad \mathcal{T} : **Glob** \rightarrow **Glob** takes a globular set X and returns the underlying globular set of the free strict ω -category generated by X. It extends globular set homomorphisms in the canonical way.

- Consider the globular set 1 with exactly one cell in every dimension.
 - We may think of the elements of $\mathcal{T}(1)$ as all possible globular pasting diagrams.

Definition

A **collection** is a globular set X equipped with a globular set homomorphism $x : X \to \mathcal{T}(1)$ called the arity map.

- \bullet The category Col is the slice category $\textbf{Glob}/\mathcal{T}(1)$
 - This replaces numeric arities with 'arity shapes'!

Monoidal Structure in Col

Definition

Let $x : X \to \mathcal{T}(1)$ and $y : Y \to \mathcal{T}(1)$ be a pair of collections. Their composition tensor product $x \Box y : X \Box Y \to \mathcal{T}(1)$ is defined by the diagram:

where $!_Y : Y \to \mathbf{1}$ is the unique map from Y to the terminal globular set. The underlying globular set $X \Box Y$ is the pullback of x and $\mathcal{T}(!_Y)$ with the arity globular set map $x \Box y$ defined to be the composition along the top row.

Globular Operads

Unit for \Box

The monoidal unit for \Box is the collection $I : \mathbf{1} \hookrightarrow \mathcal{T}(\mathbf{1})$

Definition

A **globular operad** is a monoid in **Col** with respect to the tensor product \Box .

Degenerate Collections

The collection $[id]: 1 \to \mathcal{T}(1)$ identifies the special infinite chain of iterated identities created in $\mathcal{T}(1)$ when freely generating on 1

• Any globular set A can be seen as a 'degenerate' collection via the arity map:

$$[id] \circ !_A : A \to \mathbf{1} \to \mathcal{T}(\mathbf{1})$$

Three Induced Functors

The Change of Base Functor

Given a set map $\varphi : \mathcal{A} \to \mathcal{B}$ there is an induced functor $\varphi^* : \mathbf{Glob}/\mathcal{B} \to \mathbf{Glob}/\mathcal{A}$ between slice categories called a **change of base** functor:

• It takes a globular set map $\chi : \mathcal{X} \to \mathcal{B}$ and returns the pullback map $\varphi^*(\chi) : X_{\chi} \times_{\varphi} \mathcal{A} \to \mathcal{A}$ of χ along φ

The Left Adjoint

The Dependent Sum Σ_{φ} : $\mathbf{Glob}/\mathcal{A} \to \mathbf{Glob}/\mathcal{B}$

On objects the left adjoint is simply composing an object of **Glob**/A with φ resulting in an object in **Glob**/B.

The Right Adjoint

The Dependent Product Π_{φ} : $\mathbf{Glob}/\mathcal{A} \rightarrow \mathbf{Glob}/\mathcal{B}$

Let $\psi : \mathcal{Y} \to \mathcal{A}$ be any morphism in **Glob**/ \mathcal{A} . The map $\Pi_{\varphi}(\psi) : \Gamma \to \mathcal{B}$ is constructed by specifying the fiber over each point:

- $orall b \in \mathcal{B}$ consider its fiber \mathcal{A}_b along the map arphi
- $\forall c \in \mathcal{A}_b$ consider its fiber \mathcal{Y}_c along the map ψ
- The fiber Γ_b along $\Pi_{\varphi}(\psi)$ is the product $\prod_{c \in \mathcal{A}_b} \mathcal{Y}_c$

Following this construction $\forall b \in B$ gives the complete map $\Gamma := \prod_{b \in \mathcal{B}} \Gamma_b \to \mathcal{B}.$

Internal Hom in Col

 $-\Box \mathcal{B}: \textbf{Col} \to \textbf{Col}$

Consider $b: \mathcal{B} \to \mathcal{T}(1)$

$$-\Box \mathcal{B} = \Sigma_{\mu_1} \Sigma_{\mathcal{T}(b)} \mathcal{T}(!_{\mathcal{B}})^*$$

$[\mathcal{B},-]:\text{Col}\to\text{Col}$

The adjoint is found by taking the right adjoint of each factor in the composition and reversing the order in which they are composed:

$$-\Box \mathcal{B} = \Sigma_{\mu_1} \Sigma_{\mathcal{T}(b)} \mathcal{T}(!_{\mathcal{B}})^*$$
$$[\mathcal{B}, -] = \Pi_{\mathcal{T}(!_{\mathcal{B}})} \mathcal{T}(b)^* \mu_1^*$$

 $(\mathcal{A}_{a} imes_{\mu_{1}^{*}(a)} \mathcal{T}(\mathcal{T}(1)))_{\mu_{1}^{*}(a)} imes_{\mathcal{T}(b)} \mathcal{T}(\mathcal{B})
ightarrow \mathcal{T}(\mathcal{B})$

Once again, this map is simply second projection.

We can understand its dependent product with respect to $\mathcal{T}(!_{\mathcal{B}})$ by analogy to the graded set construction.

In GrdSet

We associated to a string of n elements in B, an element of A whose arity was the sum of the arities of the elements in B.

 $(\mathcal{A}_{a} \times_{\mu_{1}^{*}(a)} \mathcal{T}(\mathcal{T}(\mathbf{1})))_{\mu_{1}^{*}(a)} \times_{\mathcal{T}(b)} \mathcal{T}(\mathcal{B}) \to \mathcal{T}(\mathcal{B})$

Once again, this map is simply second projection.

We can understand its dependent product with respect to $\mathcal{T}(!_{\mathcal{B}})$ by analogy to the graded set construction.

In GrdSet

We associated to a string of n elements in B, an element of A whose arity was the sum of the arities of the elements in B.

$\Pi_{\mathcal{T}(!_{\mathcal{B}})}\mathcal{T}(b)^*\mu_1^*(a):\Gamma\to\mathcal{T}(\mathbf{1})$

Each σ -fiber consists of all the possible ways to associate to each word $\beta \in \mathcal{T}(\mathcal{B})$, glued together per the pasting scheme σ , a *k*-cell of \mathcal{A} whose arity shape is the composite of the arity shapes of cells in \mathcal{B} which compose to form β .

We shall denote $\Pi_{\mathcal{T}(!_{\mathcal{B}})}\mathcal{T}(b)^*\mu_1^*(a):\Gamma \to \mathcal{T}(1)$ more suggestively as

$$H_{\mathcal{B},\mathcal{A}}: [\mathcal{B},\mathcal{A}] o \mathcal{T}(\mathbf{1})$$

The tautological operad should be generated by a globular set to give the appropriate notion of algebras.

We shall denote $\Pi_{\mathcal{T}(!_{\mathcal{B}})}\mathcal{T}(b)^*\mu_1^*(a):\Gamma o \mathcal{T}(1)$ more suggestively as

$$H_{\mathcal{B},\mathcal{A}}: [\mathcal{B},\mathcal{A}] \to \mathcal{T}(\mathbf{1})$$

The tautological operad should be generated by a globular set to give the appropriate notion of algebras.

• We again use a 'degenerate' globular set $x = [id] \circ !_{\mathcal{X}} : \mathcal{X} \to \mathbf{1} \to \mathcal{T}(\mathbf{1})$ to build the internal hom

 $H_{\mathcal{X},\mathcal{X}}: [\mathcal{X},\mathcal{X}] \to \mathcal{T}(\mathbf{1})$

<u>Note</u>: The step in **GrdSet** at which the internal hom 'collapsed' when all arities where 0, in this case still remembers the dimensions of each cell, even if its underlying shape is in a certain sense 'empty'.

<u>Note</u>: The step in **GrdSet** at which the internal hom 'collapsed' when all arities where 0, in this case still remembers the dimensions of each cell, even if its underlying shape is in a certain sense 'empty'.

$H_{X,X}: [X,X] \rightarrow \mathbb{N}$ in **GrdSet**

We associated to a string of n elements in X, an element of X whose arity was the sum of the arities of the n elements from X.

<u>Note</u>: The step in **GrdSet** at which the internal hom 'collapsed' when all arities where 0, in this case still remembers the dimensions of each cell, even if its underlying shape is in a certain sense 'empty'.

$H_{X,X}: [X,X] \rightarrow \mathbb{N}$ in **GrdSet**

We associated to a string of n elements in X, an element of X whose arity was the sum of the arities of the n elements from X.

$\textit{H}_{\mathcal{X},\mathcal{X}}: [\mathcal{X},\mathcal{X}] \rightarrow \mathcal{T}(1)$ in Col

Each σ -fiber consists of all the possible ways to associate to each word $\xi \in \mathcal{T}(\mathcal{X})$, glued together per the pasting scheme σ , a *k*-cell of \mathcal{X} whose arity shape is the composite of the arity shapes of cells in \mathcal{X} which compose to form ξ .

The Globular Tautological Operad gtaut(X)

$$\begin{aligned} \epsilon^{\mathcal{X}} : [\mathcal{X}, -] \Box \mathcal{X} \Rightarrow \mathbb{1}_{\mathsf{Col}} & \epsilon^{\mathcal{X}}_{\mathcal{X}} : [\mathcal{X}, \mathcal{X}] \Box \mathcal{X} \to \mathcal{X} \\ \\ \frac{\epsilon^{\mathcal{X}}_{\mathcal{X}} \circ (\mathbb{1}_{[\mathcal{X}, \mathcal{X}]} \Box \epsilon^{\mathcal{X}}_{\mathcal{X}}) : [\mathcal{X}, \mathcal{X}] \Box [\mathcal{X}, \mathcal{X}] \Box \mathcal{X} \to \mathcal{X}}{m : [\mathcal{X}, \mathcal{X}] \Box [\mathcal{X}, \mathcal{X}] \to [\mathcal{X}, \mathcal{X}]} & \frac{\lambda_{\mathcal{X}} : \mathbf{1} \Box \mathcal{X} \to \mathcal{X}}{e : \mathbf{1} \to [\mathcal{X}, \mathcal{X}]} \end{aligned}$$

Definition

The **tautological operad** on a degenerate graded set $x : \mathcal{X} \to \mathcal{T}(1)$ is the collection $gtaut(\mathcal{X}) : [\mathcal{X}, \mathcal{X}] \to \mathcal{T}(1)$ equipped with the multiplication map $m : [\mathcal{X}, \mathcal{X}] \Box [\mathcal{X}, \mathcal{X}] \to [\mathcal{X}, \mathcal{X}]$ and unit map $e : \mathbf{1} \to [\mathcal{X}, \mathcal{X}]$.

Algebra for a Collection

Definition

An **algebra for** a globular operad $o : \mathcal{O} \to \mathcal{T}(1)$ is a morphism of graded sets $\varphi : \mathcal{O} \to gtaut(X)$ for some degenerate graded set $x : \mathcal{X} \to \mathcal{T}(1)$.

Theorem

An algebra for an operad \mathcal{O} is an algebra for every operad \mathcal{P} which maps to \mathcal{O} . In particular, an algebra for \mathcal{O} is an algebra for every sub-operad of \mathcal{O} .

$$\mathcal{P} \xrightarrow{\psi} O \xrightarrow{\varphi} gtaut(\mathcal{X}) \qquad \qquad \tilde{\mathcal{O}} \xrightarrow{i} \mathcal{O} \xrightarrow{\varphi} gtaut(\mathcal{X}) \\ \mathcal{P} \xrightarrow{\varphi(\psi)} gtaut(\mathcal{X}) \qquad \qquad \tilde{\mathcal{O}} \xrightarrow{\varphi(i)} gtaut(\mathcal{X})$$

Thank You

References

- B. Fresse. *Modules over Operads and Functors*. Lectures Notes in Mathematics. Spring New York, 1967.
- P. Johnstone. *Sketches of an Elephant: A Topos Theory Compendium*. Oxford logic guides. Oxford University Press, 2002.
- P. Johnstone. *Topos Theory*. Dover Books on Mathematics. Dover Publications, 2014.
- T. Leinster. *General Operads and Multicategories*. London Mathematical Society Lecture Notes Series. Cambridge University Press, 2004.
- T. Leinster. *Higher Operads, Higher Categories*. London Mathematical Society Lecture Notes Series. Cambridge University Press, 2003.
- S. MacLane and I. Moerdijk. Sheaves in Geometry and Logic: A First Indtroduction to Topos Theory. Universitext. Springer New York, 1994.
- J. May *The Geometry of Iterated Loop Spaces*. Lecture Notes in Mathematics. Springer Berlin Heidelberg, 2006.